發表日期 3/20/2022, 2:26:39 PM
編輯 | 蘿蔔皮
設計熒光分子需要考慮多種相互關聯的分子特性,而不是與分子結構直接相關的特性,例如分子的光吸收。
在這項研究中,RIKEN 高級智能項目研究中心和東京大學等機構的研究人員閤作,使用從頭分子生成器(DNMG)與量子化學計算(QC)相結閤來開發熒光分子,這些分子在各個學科中都引起瞭廣泛關注。使用大規模並行計算(1024 核,5 天),DNMG 産生瞭 3643 個候選分子。
研究人員選擇瞭一個未報道的分子和七個報道的分子並閤成瞭它們。光緻發光光譜測量錶明,DNMG 可以以 75% 的準確度(n = 6/8)成功設計熒光分子,並産生一種未報告的分子,該分子發齣肉眼可檢測到的熒光。
該研究以「De novo creation of a naked eye�Cdetectable fluorescent molecule based on quantum chemical computation and machine learning」為題,於 2022 年 3 月 9 日發布在《Science Advances》。
簡介
熒光化閤物作為可見光發射體在多個學科的應用中非常重要,包括有機發光二極管、傳感器和生物成像。盡管已經為這些和其他應用開發瞭許多熒光分子,但不斷需要新的分子來解決當前材料在功能、可持續性和低成本方麵的缺點。即使是化學結構的細微變化也可能導緻重大改進。
熒光是一種受量子力學支配的光化學性質。然而,盡管熒光研究的曆史悠久,但沒有明確的指導方針來製造熒光分子,就像製造吸光分子一樣。
分子熒光發射的簡化物理化學機製如下圖所示。最初,研究人員認為分子處於單綫態(S)狀態;在 S最小值時,它吸收光並轉變為單綫態第一激發態(S1)。S1激發分子在 S1狀態下弛豫到最小值並迴到 S狀態,將 S1和 S狀態之間的能量差作為光(熒光)發射。激發的分子應該在 S1狀態下移動到最小值,以便在不失活的情況下發光。
一些因素,包括與氧分子的反應、分子碰撞、分子內/分子間電子轉移和聚集,可能會在分子在激發狀態下運動時使其失活;這導緻很難將熒光與分子結構相關聯。因此,自動化熒光分子設計將是有幫助的。
圖示:熒光分子的單綫態基(S0)態和單綫態第一激發(S1)態的 PES 示意圖。(來源:論文)
近期,基於機器學習(ML)的從頭分子生成器(DNMG)已被開發用於設計具有簡單和可預測值的分子,例如分配係數(logP)的對數,可以從分子的組成部分估計。
將 DNMG 與經典模擬相結閤,成功地生成瞭具有改進的多功能性和實用性的分子。例如,DNMG 和對接模擬的結閤可用於設計生物活性分子;這是通過有機閤成研究的。結閤分子動力學或預測模型,DNMG 還可以指導功能聚閤物的閤成。
在之前的研究中,研究人員將量子化學計算(QC)與 DNMG(稱為 ChemTS)相結閤,它(原則上)可以從頭設計以量子力學(QM)特性為特徵的功能分子。因此,ChemTS 與 QC 相結閤被應用於設計可以吸收具有所需波長的光的分子。在 86 個設計和生成的分子中,選擇瞭 6 個未包含在訓練數據集中的已知分子進行紫外-可見 (UV-vis) 吸收測量。結果與發生器的目標波長一緻。
此外,DNMG 增加瞭發現新分子的可能性,因為與傳統的高通量 QM 和使用 ML 模型篩選相比,DNMG 的搜索區域在數據集中不受限製。研究人員還使用 QC 對 ChemTS 産生的分子進行瞭官能團富集分析,以最大化電子增益能量,並發現瞭駐極體文獻中未包含的重要官能團。
圖示:在 B3LYP/3-21G* 水平上,生成分子的 S1 狀態吸收和熒光的 OS 分布麯綫。(來源:論文)
雖然相對簡單的特性,如光吸收和電子增益能量,可以直接與分子結構相關,但復雜的現象,如僅由特定分子錶現齣的熒光,難度要大得多。
在熒光的情況下,有必要考慮多種性質,這些性質錯綜復雜地交織在一起。這使得很難為分子結構的設計建立直觀的指導方針。為瞭設計實用的化閤物,控製目標分子特性的復雜機製必須適當地數字化以用於 DNMG。此外,必須考慮計算成本隨著探索化學空間的機製復雜性的增加而增加。
圖示:使用 ChemTS 設計的未報告的熒光分子。(來源:論文)
在這項研究中,該團隊設計瞭具有大規模並行化 ChemTS 版本的熒光分子。該程序包使用 QC 將熒光機製的最低要求數字化。有幾個基於電子結構理論的用戶友好軟件包可用於分子和材料的 QC。
為瞭平衡可靠性與計算成本,研究人員使用密度泛函理論 (DFT) (29) 來評估勢能麵 (PES)。為瞭解決廣泛探索化學空間的計算成本,用基於虛擬損失的概念對 ChemTS 進行大規模並行化;使用 1024 個核,生成瞭 3643 個分子。
為瞭驗證,他們閤成瞭一種未報告的化閤物和幾種已報告的化閤物。六種化閤物,包括一種未報道的化閤物,如預期的那樣發齣熒光。未報道的分子可通過市售試劑之間的偶聯閤成,具有意想不到的特性,盡管它由常見的片段[香豆素、吡啶和吡唑並嘧啶]組成。這錶明大規模並行 DNMG 有可能引發分子設計的範式轉變。
圖示:PC的光緻過程。(來源:論文)
討論
幾十年來,QC 在化學和材料科學中發揮瞭重要作用。在此期間,計算機輔助分子設計已被用於藥物發現。然而,QC 隻專注於對實驗結果的分析和推測;很少考慮諸如預測各種現象和設計材料之類的創造性工作。
ML 算法最近在化學和材料科學中的應用,代錶瞭計算機輔助化學和材料科學的一個積極轉摺點。為瞭自動設計對有機電子有用的分子,將 QC 與 DNMG 相結閤至關重要,因為在此類應用中,量子力學不容忽視。然而,基於 QC 的 DNMG 的價值必須先得到證明,然後纔能在實踐中采用。
在這項研究中,研究人員使用 DNMG 來創建具有目前無法輕易預測的特性的分子:熒光。他們使用 DFT 設計瞭熒光化閤物,這是一種固有的量子力學方法。盡管眾所周知,分子受量子力學規則的支配,但僅憑 QC 很難從頭創建一個新分子。盡管熒光分子具有簡單的 PES,但它們很難從第一原理設計,因為它們的多樣性使得熒光與分子結構的關聯變得非常睏難。
圖示:PC的光化學性質。(來源:論文)
然而,生成器處理瞭這種多樣性,並成功地從頭開始設計瞭熒光分子。基於 QC 的大量從頭計算需要大量並行計算(1024 核,5 天);盡管如此,生成器還是成功地産生瞭 3643 個候選分子。發生器産生吸收長波長光的分子,以類似於專業人士的方式控製分子的共軛長度;然而,它無法找到分子的熒光波長/強度與共軛長度/芳環數之間的明確相關性。這錶明從頭設計熒光分子的睏難。
研究人員根據可閤成性和可見熒光標準,選擇瞭七種已知化閤物進行驗證和一種候選化閤物進行進一步研究。實驗驗證錶明,DNMG 成功設計瞭 75%(八分之六)的熒光化閤物。PC 的熒光(肉眼可見)證明瞭 DNMG 的創新潛力。
在設計 PC 時,生成器在香豆素中引入瞭一個不熟悉的基團吡唑並嘧啶;這種連接引起瞭高空間排斥,但仍導緻 OS 增加。
普通化學傢很難想齣一種通過增加片段之間的空間排斥來增強熒光及其強度的方法。這說明生成器是一種可以超越專業知識或直覺的工具。DNMG 有可能引發分子設計的範式轉變。
雖然這項工作中閤成的分子的熒光旨在通過肉眼檢測,但通過消除對原子類型的限製並延長設計時間,將産生更多有趣的分子。
此外,通過包括分子的光誘導動力學,可以實現更好的分子設計。通過進一步開發 QC,可以設計齣更復雜的功能分子。
因此,具有大規模並行計算的生成器將能夠創建具有多樣化和有趣功能的復雜分子,可能導緻非常復雜的閤成路綫,這將增加最近開發的基於 ML 的規劃逆閤成路綫的要求。
開源地址:
https://github.com/tsudalab/GaussianRunPack
https://github.com/tsudalab/FL_ChemTS
論文鏈接:https://www.science.org/doi/10.1126/sciadv.abj3906
人工智能 × [ 生物 神經科學 數學 物理 材料 ]
「ScienceAI」關注人工智能與其他前沿技術及基礎科學的交叉研究與融閤發展 。
歡迎 關 注標星 ,並點擊右下角 點贊 和 在看 。